A polynomial analogue of Jacobsthal function
Autor: | Kalmynin, Alexander, Konyagin, Sergei |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For a polynomial $f(x)\in \mathbb Z[x]$ we study an analogue of Jacobsthal function, defined by the formula \[ j_f(N)=\max_{m}\{\text{For some } x\in \mathbb N \text{ the inequality } (x+f(i),N)>1 \text{ holds for all }i\leq m\}. \] We prove a lower bound \[ j_f(P(y))\gg y(\ln y)^{\ell_f-1}\left(\frac{(\ln\ln y)^2}{\ln\ln\ln y}\right)^{h_f}\left(\frac{\ln y\ln\ln\ln y}{(\ln\ln y)^2}\right)^{M(f)}, \] where $P(y)$ is the product of all primes $p$ below $y$, $\ell_f$ is the number of distinct linear factors of $f(x)$, $h_f$ is the number of distinct non-linear irreducible factors and $M(f)$ is the average size of the maximal preimage of a point under a map $f:\mathbb F_p\to \mathbb F_p$. The quantity $M(f)$ is computed in terms of certain Galois groups. Comment: 12 pages, mistakes and misprints corrected in version 2 |
Databáze: | arXiv |
Externí odkaz: |