Evidential Decision Theory via Partial Markov Categories
Autor: | Di Lavore, Elena, Román, Mario |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We introduce partial Markov categories. In the same way that Markov categories encode stochastic processes, partial Markov categories encode stochastic processes with constraints, observations and updates. In particular, we prove a synthetic Bayes theorem; we apply it to define a syntactic partial theory of observations on any Markov category, whose normalisations can be computed in the original Markov category. Finally, we formalise Evidential Decision Theory in terms of partial Markov categories, and provide implemented examples. Comment: 23 pages. Final version for LiCS'23. Version v1 contains an error in Example 3.26, and we thank Dario Stein for pointing it out |
Databáze: | arXiv |
Externí odkaz: |