Infinite memory effects on the stability of Biharmonic Schr\'odinger equation

Autor: Filho, Roberto de A. Capistrano, de Jesus, Isadora Maria, Martinez, Victor Hugo Gonzalez
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: This paper deals with the stabilization of the linear Biharmonic Schr\"odinger equation in an $n$-dimensional open bounded domain under Dirichlet-Neumann boundary conditions considering three infinite memory terms as damping mechanisms. We show that depending on the smoothness of initial data and the arbitrary growth at infinity of the kernel function, this class of solution goes to zero with a polynomial decay rate like $t^{-n}$ depending on assumptions about the kernel function associated with the infinite memory terms.
Databáze: arXiv