The minimal volume of a lattice polytope

Autor: Sainose, Ichiro, Hamano, Ginji, Emura, Tatsuo, Hibi, Takayuki
Rok vydání: 2023
Předmět:
Zdroj: Australasian J. Combin. 85 (2023), 159--163
Druh dokumentu: Working Paper
Popis: Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope of dimension $d$. Let $b$ denote the number of lattice points belonging to the boundary of $\mathcal{P}$ and $c$ that to the interior of $\mathcal{P}$. It follows from a lower bound theorem of Ehrhart polynomials that, when $c > 0$, the volume of $\mathcal{P}$ is bigger than or equal to $(dc + (d-1)b - d^2 + 2)/d!$. In the present paper, via triangulations, a short and elementary proof of the minimal volume formula is given.
Databáze: arXiv