Bounds on Embeddings of Triangulations of Spheres
Autor: | Southgate, Jack |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Borcea and Streinu showed that the upper bound of the number of congruence classes of a minimally $d$-volume rigid $(d+1)$-uniform hypergraph on $n$ vertices in $\mathbb{R}^d$ increases exponentially in $n$ and $d$. We show that this result also holds for triangulations of $\mathbb{S}^2$ in $\mathbb{R}^2$, and then find a geometrically motivated bound linear in $n$ for bipyramids. By the methods used to deduce this bound, we show that, in general, global $d$-volume rigidity in $\mathbb{R}^d$ is not a generic property of a $(d+1)$-uniform hypergraph. Comment: 25 pages, 5 figures |
Databáze: | arXiv |
Externí odkaz: |