Quantum Codes from additive constacyclic codes over a mixed alphabet and the MacWilliams identities
Autor: | Debnath, Indibar, Singh, Ashutosh, Prakash, Om, Alhevaz, Abdollah |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\mathbb{Z}_p$ be the ring of integers modulo a prime number $p$ where $p-1$ is a quadratic residue modulo $p$. This paper presents the study of constacyclic codes over chain rings $\mathcal{R}=\frac{\mathbb{Z}_p[u]}{\langle u^2\rangle}$ and $\mathcal{S}=\frac{\mathbb{Z}_p[u]}{\langle u^3\rangle}$. We also study additive constacyclic codes over $\mathcal{R}\mathcal{S}$ and $\mathbb{Z}_p\mathcal{R}\mathcal{S}$ using the generator polynomials over the rings $\mathcal{R}$ and $\mathcal{S},$ respectively. Further, by defining Gray maps on $\mathcal{R}$, $\mathcal{S}$ and $\mathbb{Z}_p\mathcal{R}\mathcal{S},$ we obtain some results on the Gray images of additive codes. Then we give the weight enumeration and MacWilliams identities corresponding to the additive codes over $\mathbb{Z}_p\mathcal{R}\mathcal{S}$. Finally, as an application of the obtained codes, we give quantum codes using the CSS construction. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |