Weak error analysis for a nonlinear SPDE approximation of the Dean-Kawasaki equation
Autor: | Djurdjevac, Ana, Kremp, Helena, Perkowski, Nicolas |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s40072-024-00324-1 |
Popis: | We consider a nonlinear SPDE approximation of the Dean-Kawasaki equation for independent particles. Our approximation satisfies the physical constraints of the particle system, i.e. its solution is a probability measure for all times (preservation of positivity and mass conservation). Using a duality argument, we prove that the weak error between particle system and nonlinear SPDE is of the order $N^{-1-1/(d/2+1)}\log (N)$. Along the way we show well-posedness, a comparison principle and an entropy estimate for a class of nonlinear regularized Dean-Kawasaki equations with It\^o noise. Keywords: Dean-Kawasaki equation, weak error analysis, Laplace duality Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |