Traces of Sobolev spaces to irregular subsets of metric measure spaces

Autor: Tyulenev, Alexander
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Given $p \in (1,\infty)$, let $(\operatorname{X},\operatorname{d},\mu)$ be a metric measure space with uniformly locally doubling measure $\mu$ supporting a weak local $(1,p)$-Poincar\'e inequality. For each $\theta \in [0,p)$, we characterize the trace space of the Sobolev $W^{1}_{p}(\operatorname{X})$-space to lower codimension-$\theta$ content regular closed subsets $S \subset \operatorname{X}$. In particular, if the space $(\operatorname{X},\operatorname{d},\mu)$ is Ahlfors $Q$-regular for some $Q \geq 1$ and $p \in (Q,\infty)$, then we get an intrinsic description of the trace-space of the Sobolev $W^{1}_{p}(\operatorname{X})$-space to arbitrary closed nonempty set $S \subset \operatorname{X}$.
Comment: Many typos in the previous versions have been corrected. Some proofs have been clarified
Databáze: arXiv