Recursive relations and quantum eigensolver algorithms within modified Schrieffer--Wolff transformations for the Hubbard dimer

Autor: Marécat, Quentin, Senjean, Bruno, Saubanère, Matthieu
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevB.107.155110
Popis: We derive recursive relations for the Schrieffer--Wolff (SW) transformation applied to the half-filled Hubbard dimer. While the standard SW transformation is set to block-diagonalize the transformed Hamiltonian solely at the first order of perturbation, we infer from recursive relations two types of modifications, variational or iterative, that approach, or even enforce for the homogeneous case, the desired block-diagonalization at infinite order of perturbation. The modified SW unitary transformations are then used to design an test quantum algorithms adapted to the noisy and fault-tolerant era. This work paves the way toward the design of alternative quantum algorithms for the general Hubbard Hamiltonian.
Databáze: arXiv