Volume-law to area-law entanglement transition in a non-unitary periodic Gaussian circuit
Autor: | Granet, Etienne, Zhang, Carolyn, Dreyer, Henrik |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Phys. Rev. Lett. 130, 230401 (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevLett.130.230401 |
Popis: | We consider Gaussian quantum circuits that alternate unitary gates and post-selected weak measurements, with spatial translation symmetry and time periodicity. We show analytically that such models can host different kinds of measurement-induced phase transitions detected by entanglement entropy, by mapping the time evolution and weak measurements to M\"obius transformations. We demonstrate the existence of a log-law to area-law transition, as well as a volume-law to area-law transition. For the latter, we compute the critical exponent $\nu$ for the Hartley, von Neumann and R\'enyi entropies exactly. Comment: 5 pages, 2 figures, 6 pages of supplemental material. Updated Fig. 2 and added Ref. 29 |
Databáze: | arXiv |
Externí odkaz: |