Integrable systems in cosymplectic geometry
Autor: | Jovanovic, Bozidar, Lukic, Katarina |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | J. Phys. A: Math. Theor. 56 (2023) 015201 (18pp) |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/1751-8121/acafb4 |
Popis: | Motivated by the time-dependent Hamiltonian dynamics, we extend the notion of Arnold-Liouville and noncommutative integrability of Hamiltonian systems on symplectic manifolds to that on cosymplectic manifolds. We prove a variant of the non-commutative integrability for evaluation and Reeb vector fields on cosymplectic manifolds and provide a construction of cosymplectic action-angle variables. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |