Integrable systems in cosymplectic geometry

Autor: Jovanovic, Bozidar, Lukic, Katarina
Rok vydání: 2022
Předmět:
Zdroj: J. Phys. A: Math. Theor. 56 (2023) 015201 (18pp)
Druh dokumentu: Working Paper
DOI: 10.1088/1751-8121/acafb4
Popis: Motivated by the time-dependent Hamiltonian dynamics, we extend the notion of Arnold-Liouville and noncommutative integrability of Hamiltonian systems on symplectic manifolds to that on cosymplectic manifolds. We prove a variant of the non-commutative integrability for evaluation and Reeb vector fields on cosymplectic manifolds and provide a construction of cosymplectic action-angle variables.
Comment: 15 pages
Databáze: arXiv