Autor: |
Chenavier, Nicolas, Darwiche, Ahmad, Rousselle, Arnaud |
Rok vydání: |
2022 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Given a simple transient random walk $(S_n)_{n\geq 0}$ in $\mathbf{Z}$ and a stationary sequence of real random variables $(\xi(s))_{s\in \mathbf{Z}}$, we investigate the extremes of the sequence $(\xi(S_n))_{n\geq 0}$. Under suitable conditions, we make explicit the extremal index and show that the point process of exceedances converges to a compound Poisson point process. We give two examples for which the cluster size distribution can be made explicit. |
Databáze: |
arXiv |
Externí odkaz: |
|