Restricted Log-Exp-Analytic Power Functions
Autor: | Opris, Andre |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A preparation theorem for compositions of restricted log-exp-analytic functions and power functions of the form $$h: \mathbb{R} \to \mathbb{R}, x \mapsto \left\{\begin{array}{ll} x^r, & x > 0, \\ 0, & \textnormal{ else, } \end{array}\right.$$ for $r \in \mathbb{R}$ is given. Consequently we obtain a parametric version of Tamm's theorem for this class of functions which is indeed a full generalisation of the parametric version of Tamm's theorem for $\mathbb{R}_{\textnormal{an}}^{\mathbb{R}}$-definable functions. Comment: arXiv admin note: substantial text overlap with arXiv:2112.10818, arXiv:2205.12011, arXiv:2112.08161 |
Databáze: | arXiv |
Externí odkaz: |