On the Dotsenko-Fateev complex twin of the Selberg integral and its extensions
Autor: | Neretin, Yury A. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Ramanjan Journal, 2023 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11139-023-00804-3 |
Popis: | The Selberg integral has a twin (`the Dotsenko--Fateev integral') of the following form. We replace real variables $x_k$ in the integrand $\prod |x_k|^{\sigma-1}\,|1-x_k|^{\tau-1} \prod|x_k-x_l|^{2\theta}$ of the Selberg integral by complex variables $z_k$, integration over a cube we replace by an integration over the whole complex space $\mathbb{C}^n$. According to Dotsenko, Fateev, and Aomoto, such integral is a product of Gamma functions. We define and evaluate a family of beta integrals over spaces $\mathbb{C}^m\times \mathbb{C}^{m+1}\times \dots \times \mathbb{C}^n$, which for $m=n$ gives the complex twin of the Selberg integral mentioned above (with three additional integer parameters) Comment: 15pages; typos are corrected; some proofs are extended |
Databáze: | arXiv |
Externí odkaz: |