Popis: |
The emergence of novel infectious agents presents challenges to statistical models of disease transmission. These challenges arise from limited, poor-quality data and an incomplete understanding of the agent. Moreover, outbreaks manifest differently across regions due to various factors, making it imperative for models to factor in regional specifics. In this work, we offer a model that effectively utilizes constrained data resources to estimate disease transmission rates at the local level, especially during the early outbreak phase when primarily infection counts and aggregated local characteristics are accessible. This model merges a pathogen transmission methodology based on daily infection numbers with regression techniques, drawing correlations between disease transmission and local-area factors, such as demographics, health policies, behavior, and even climate, to estimate and forecast daily infections. We incorporate the quasi-score method and an error term to navigate potential data concerns and mistaken assumptions. Additionally, we introduce an online estimator that facilitates real-time data updates, complemented by an iterative algorithm for parameter estimation. This approach facilitates real-time analysis of disease transmission when data quality is suboptimal and knowledge of the infectious pathogen is limited. It is particularly useful in the early stages of outbreaks, providing support for local decision-making. |