Positive Lyapunov Exponent in the Hopf Normal Form with Additive Noise
Autor: | Chemnitz, Dennis, Engel, Maximilian |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Communications in Mathematical Physics, Volume 402, pages 1807-1843, (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00220-023-04764-z |
Popis: | We prove the positivity of Lyapunov exponents for the normal form of a Hopf bifurcation, perturbed by additive white noise, under sufficiently strong shear strength. This completes a series of related results for simplified situations which we can exploit by studying suitable limits of the shear and noise parameters. The crucial technical ingredient for making this approach rigorous is a result on the continuity of Lyapunov exponents via Furstenberg Khasminskii formulas. Comment: 35 pages |
Databáze: | arXiv |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |