Optimal thresholds for Latin squares, Steiner Triple Systems, and edge colorings
Autor: | Jain, Vishesh, Pham, Huy Tuan |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that the threshold for the binomial random $3$-partite, $3$-uniform hypergraph $G^{3}((n,n,n),p)$ to contain a Latin square is $\Theta(\log{n}/n)$. We also prove analogous results for Steiner triple systems and proper list edge-colorings of the complete (bipartite) graph with random lists. Our results answer several related questions of Johansson, Luria-Simkin, Casselgren-H\"aggkvist, Simkin, and Kang-Kelly-K\"uhn-Methuku-Osthus. Comment: 10 pages. Simplified proof; results unchanged |
Databáze: | arXiv |
Externí odkaz: |