Optimal thresholds for Latin squares, Steiner Triple Systems, and edge colorings

Autor: Jain, Vishesh, Pham, Huy Tuan
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We show that the threshold for the binomial random $3$-partite, $3$-uniform hypergraph $G^{3}((n,n,n),p)$ to contain a Latin square is $\Theta(\log{n}/n)$. We also prove analogous results for Steiner triple systems and proper list edge-colorings of the complete (bipartite) graph with random lists. Our results answer several related questions of Johansson, Luria-Simkin, Casselgren-H\"aggkvist, Simkin, and Kang-Kelly-K\"uhn-Methuku-Osthus.
Comment: 10 pages. Simplified proof; results unchanged
Databáze: arXiv