Tight concentration of star saturation number in random graphs
Autor: | Demyanov, Sergej, Zhukovskii, Maksim |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For given graphs $F$ and $G$, the minimum number of edges in an inclusion-maximal $F$-free subgraph of $G$ is called the $F$-saturation number and denoted $\mathrm{sat}(G, F)$. For the star $F=K_{1,r}$, the asymptotics of $\mathrm{sat}(G(n,p),F)$ is known. We prove a sharper result: whp $\mathrm{sat}(G(n,p), K_{1,r})$ is concentrated in a set of 2 consecutive points. |
Databáze: | arXiv |
Externí odkaz: |