The Cyclic Vector Lemma

Autor: Magid, Andy
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Let $F$ be a differential field of characteristic zero with algebraically closed constant field $C$. Let $E$ be a Picard--Vessiot closure of $F$, $R \subset E$ its Picard--Vessiot ring and $\Pi$ the differential Galois group of $E$ over $F$. Let $V$ be a differential $F$ module, finite dimensional as an $F$ vector space. Then $V$ is singly generated as a differential $F$ module if and only if there is a $\Pi$ module injection $\text{Hom}_F^\text{diff}(V,R) \to R$. If $C \neq F$ such an injection always exists.
Comment: 3 pages
Databáze: arXiv