The Cyclic Vector Lemma
Autor: | Magid, Andy |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $F$ be a differential field of characteristic zero with algebraically closed constant field $C$. Let $E$ be a Picard--Vessiot closure of $F$, $R \subset E$ its Picard--Vessiot ring and $\Pi$ the differential Galois group of $E$ over $F$. Let $V$ be a differential $F$ module, finite dimensional as an $F$ vector space. Then $V$ is singly generated as a differential $F$ module if and only if there is a $\Pi$ module injection $\text{Hom}_F^\text{diff}(V,R) \to R$. If $C \neq F$ such an injection always exists. Comment: 3 pages |
Databáze: | arXiv |
Externí odkaz: |