An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization

Autor: Chen, Lesi, Ye, Haishan, Luo, Luo
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: This paper studies the stochastic nonconvex-strongly-concave minimax optimization over a multi-agent network. We propose an efficient algorithm, called Decentralized Recursive gradient descEnt Ascent Method (DREAM), which achieves the best-known theoretical guarantee for finding the $\epsilon$-stationary points. Concretely, it requires $\mathcal{O}(\min (\kappa^3\epsilon^{-3},\kappa^2 \sqrt{N} \epsilon^{-2} ))$ stochastic first-order oracle (SFO) calls and $\tilde{\mathcal{O}}(\kappa^2 \epsilon^{-2})$ communication rounds, where $\kappa$ is the condition number and $N$ is the total number of individual functions. Our numerical experiments also validate the superiority of DREAM over previous methods.
Databáze: arXiv