Popis: |
Dunhuang murals are a collection of Chinese style and national style, forming a self-contained Chinese-style Buddhist art. It has very high historical and cultural value and research significance. Among them, the lines of Dunhuang murals are highly general and expressive. It reflects the character's distinctive character and complex inner emotions. Therefore, the outline drawing of murals is of great significance to the research of Dunhuang Culture. The contour generation of Dunhuang murals belongs to image edge detection, which is an important branch of computer vision, aims to extract salient contour information in images. Although convolution-based deep learning networks have achieved good results in image edge extraction by exploring the contextual and semantic features of images. However, with the enlargement of the receptive field, some local detail information is lost. This makes it impossible for them to generate reasonable outline drawings of murals. In this paper, we propose a novel edge detector based on self-attention combined with convolution to generate line drawings of Dunhuang murals. Compared with existing edge detection methods, firstly, a new residual self-attention and convolution mixed module (Ramix) is proposed to fuse local and global features in feature maps. Secondly, a novel densely connected backbone extraction network is designed to efficiently propagate rich edge feature information from shallow layers into deep layers. Compared with existing methods, it is shown on different public datasets that our method is able to generate sharper and richer edge maps. In addition, testing on the Dunhuang mural dataset shows that our method can achieve very competitive performance. |