Asymptotic profiles for a nonlinear Kirchhoff equation with combined powers nonlinearity
Autor: | Ma, Shiwang, Moroz, Vitaly |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study asymptotic behavior of positive ground state solutions of the nonlinear Kirchhoff equation $$ -\Big(a+b\int_{\mathbb R^N}|\nabla u|^2\Big)\Delta u+ \lambda u= u^{q-1}+ u^{p-1} \quad {\rm in} \ \mathbb R^N, $$ as $\lambda\to 0$ and $\lambda\to +\infty$, where $N=3$ or $N= 4$, $20$, $b\ge 0$ are constants and $\lambda>0$ is a parameter. In particular, we prove that in the case $2Comment: 40 pages |
Databáze: | arXiv |
Externí odkaz: |