Convexity of 2-convex translating and expanding solitons to the mean curvature flow in $\mathbb{R}^{n+1}$

Autor: Xie, Junming, Yu, Jiangtao
Rok vydání: 2022
Předmět:
Zdroj: J. Geom. Anal. 33 (2023), no. 8, Paper No. 252, 19 pp
Druh dokumentu: Working Paper
DOI: 10.1007/s12220-023-01260-7
Popis: In this paper, inspired by the work of Spruck-Xiao [27] and based partly on a result of Derdzi\'nski [11], we prove the convexity of complete 2-convex translating and expanding solitons to the mean curvature flow in $\mathbb{R}^{n+1}$. More precisely, for $n\geq 3$, we show that any $n$-dimensional complete 2-convex translating solitons are convex, and any $n$-dimensional complete 2-convex self-expanders asymptotic to (strictly) mean convex cones are convex.
Comment: 15 pages
Databáze: arXiv