Determinantal varieties from point configurations on hypersurfaces

Autor: Caminata, Alessio, Moon, Han-Bom, Schaffler, Luca
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We consider the scheme $X_{r,d,n}$ parametrizing $n$ ordered points in projective space $\mathbb{P}^r$ that lie on a common hypersurface of degree $d$. We show that this scheme has a determinantal structure and we prove that it is irreducible, Cohen-Macaulay, and normal. Moreover, we give an algebraic and geometric description of the singular locus of $X_{r,d,n}$ in terms of Castelnuovo-Mumford regularity and $d$-normality. This yields a characterization of the singular locus of $X_{2,d,n}$ and $X_{3,2,n}$.
Comment: 24 pages. Final version with minor corrections. To appear in International Mathematics Research Notices
Databáze: arXiv