Petroleum prices prediction using data mining techniques -- A Review

Autor: Weldon, Kiplang'at, Ngechu, John, Everlyne, Ngatho, Njambi, Nancy, Gikunda, Kinyua
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Over the past 20 years, Kenya's demand for petroleum products has proliferated. This is mainly because this particular commodity is used in many sectors of the country's economy. Exchange rates are impacted by constantly shifting prices, which also impact Kenya's industrial output of commodities. The cost of other items produced and even the expansion of the economy is significantly impacted by any change in the price of petroleum products. Therefore, accurate petroleum price forecasting is critical for devising policies that are suitable to curb fuel-related shocks. Data mining techniques are the tools used to find valuable patterns in data. Data mining techniques used in petroleum price prediction, including artificial neural networks (ANNs), support vector machines (SVMs), and intelligent optimization techniques like the genetic algorithm (GA), have grown increasingly popular. This study provides a comprehensive review of the existing data mining techniques for making predictions on petroleum prices. The data mining techniques are classified into regression models, deep neural network models, fuzzy sets and logic, and hybrid models. A detailed discussion of how these models are developed and the accuracy of the models is provided.
Databáze: arXiv