Autor: |
Rana, Julie, Rollenske, Sönke |
Rok vydání: |
2022 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We consider the stable compactification $\bar {\mathfrak H}$ of the moduli space of Horikawa surfaces with $K_X^2 = 2p_g(X) -4$. When $K_X^2 =8\ell$ we show that the closures of the two components $\mathfrak H^{\mathrm I}$ and $\mathfrak H^{\mathrm {II}}$ of the Gieseker moduli space intersect, for $\ell>2$ in a divisor parametrising explicitly described semi-smooth surfaces. With growing $K_X^2$ we find an increasing number of generically non-reduced irreducible components in the same connected component of the moduli space of stable surfaces. |
Databáze: |
arXiv |
Externí odkaz: |
|