Riesz transform on manifolds with ends of different volume growth for $1
Autor: | Jiang, Renjin, Li, Hongquan, Lin, Haibo |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $M_1$, $\cdots$, $M_\ell$ be complete, connected and non-collapsed manifolds of the same dimension, where $2\le \ell\in\mathbb{N}$, and suppose that each $M_i$ satisfies a doubling condition and a Gaussian upper bound for the heat kernel. If each manifold $M_i$ has volume growth either bigger than two or equal to two, then we show that the Riesz transform $\nabla \L^{-1/2}$ is bounded on $L^p(M)$ for each $1Comment: 38pp |
Databáze: | arXiv |
Externí odkaz: |