Fundamental groups of reduced suspensions are locally free
Autor: | Brazas, Jeremy, Gillespie, Patrick |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we analyze the fundamental group $\pi_1(\Sigma X,\overline{x_0})$ of the reduced suspension $\Sigma X$ where $(X,x_0)$ is an arbitrary based Hausdorff space. We show that $\pi_1(\Sigma X,\overline{x_0})$ is canonically isomorphic to a direct limit $\varinjlim_{A\in\mathscr{P}}\pi_1(\Sigma A,\overline{x_0})$ where each group $\pi_1(\Sigma A,\overline{x_0})$ is isomorphic to a finitely generated free group or the infinite earring group. A direct consequence of this characterization is that $\pi_1(\Sigma X,\overline{x_0})$ is locally free for any Hausdorff space $X$. Additionally, we show that $\Sigma X$ is simply connected if and only if $X$ is sequentially $0$-connected at $x_0$. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |