Magic3D: High-Resolution Text-to-3D Content Creation

Autor: Lin, Chen-Hsuan, Gao, Jun, Tang, Luming, Takikawa, Towaki, Zeng, Xiaohui, Huang, Xun, Kreis, Karsten, Fidler, Sanja, Liu, Ming-Yu, Lin, Tsung-Yi
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: DreamFusion has recently demonstrated the utility of a pre-trained text-to-image diffusion model to optimize Neural Radiance Fields (NeRF), achieving remarkable text-to-3D synthesis results. However, the method has two inherent limitations: (a) extremely slow optimization of NeRF and (b) low-resolution image space supervision on NeRF, leading to low-quality 3D models with a long processing time. In this paper, we address these limitations by utilizing a two-stage optimization framework. First, we obtain a coarse model using a low-resolution diffusion prior and accelerate with a sparse 3D hash grid structure. Using the coarse representation as the initialization, we further optimize a textured 3D mesh model with an efficient differentiable renderer interacting with a high-resolution latent diffusion model. Our method, dubbed Magic3D, can create high quality 3D mesh models in 40 minutes, which is 2x faster than DreamFusion (reportedly taking 1.5 hours on average), while also achieving higher resolution. User studies show 61.7% raters to prefer our approach over DreamFusion. Together with the image-conditioned generation capabilities, we provide users with new ways to control 3D synthesis, opening up new avenues to various creative applications.
Comment: Accepted to CVPR 2023 as highlight. Project website: https://research.nvidia.com/labs/dir/magic3d
Databáze: arXiv