Packing $1.35\cdot 10^{11}$ rectangles into a unit square
Autor: | Zhu, Mingliang, Joós, Antal |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | It is known that $\sum\limits_{i=1}^{\infty} \frac{1}{i (i+1)} = 1$. In 1968, Meir and Moser asked for finding the smallest $\epsilon$ such that all the rectangles of sizes $1/i \times 1/(i + 1)$ for $i = 1, 2, \ldots$, can be packed into a unit square or a rectangle of area $1 + \epsilon$. In this paper, we show that we can pack the first $1.35\cdot10^{11}$ rectangles into the unit square and give an estimate for $\epsilon$ from this packing. Comment: 7 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |