Rainbow even cycles
Autor: | Dong, Zichao, Xu, Zijian |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | SIAM Journal on Discrete Mathematics, vol. 38(2), 2024 |
Druh dokumentu: | Working Paper |
DOI: | 10.1137/23M1564808 |
Popis: | We prove that every family of (not necessarily distinct) even cycles $D_1, \dotsc, D_{\lfloor 1.2(n-1) \rfloor+1}$ on some fixed $n$-vertex set has a rainbow even cycle (that is, a set of edges from distinct $D_i$'s, forming an even cycle). This resolves an open problem of Aharoni, Briggs, Holzman and Jiang. Moreover, the result is best possible for every positive integer $n$. Comment: 20 pages, 10 figures |
Databáze: | arXiv |
Externí odkaz: |