Rainbow even cycles

Autor: Dong, Zichao, Xu, Zijian
Rok vydání: 2022
Předmět:
Zdroj: SIAM Journal on Discrete Mathematics, vol. 38(2), 2024
Druh dokumentu: Working Paper
DOI: 10.1137/23M1564808
Popis: We prove that every family of (not necessarily distinct) even cycles $D_1, \dotsc, D_{\lfloor 1.2(n-1) \rfloor+1}$ on some fixed $n$-vertex set has a rainbow even cycle (that is, a set of edges from distinct $D_i$'s, forming an even cycle). This resolves an open problem of Aharoni, Briggs, Holzman and Jiang. Moreover, the result is best possible for every positive integer $n$.
Comment: 20 pages, 10 figures
Databáze: arXiv