Different degrees of non-compactness for optimal Sobolev embeddings
Autor: | Lang, Jan, Mihula, Zdeněk |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | J. Funct. Anal., 284(10):109880, 2023 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jfa.2023.109880 |
Popis: | The structure of non-compactness of optimal Sobolev embeddings of $m$-th order into the class of Lebesgue spaces and into that of all rearrangement-invariant function spaces is quantitatively studied. Sharp two-sided estimates of Bernstein numbers of such embeddings are obtained. It is shown that, whereas the optimal Sobolev embedding within the class of Lebesgue spaces is finitely strictly singular, the optimal Sobolev embedding in the class of all rearrangement-invariant function spaces is not even strictly singular. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |