A note on reduction of tiling problems
Autor: | Meyerovitch, Tom, Sanadhya, Shrey, Solomon, Yaar |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that translational tiling problems in a quotient of $\mathbb{Z}^d$ can be effectively reduced or ``simulated'' by translational tiling problems in $\mathbb{Z}^d$. In particular, for any $d \in \mathbb{N}$, $k < d$ and $N_1,\ldots,N_k \in \mathbb{N}$ the existence of an aperiodic tile in $\mathbb{Z}^{d-k} \times (\mathbb{Z} / N_1\mathbb{Z} \times \ldots \times \mathbb{Z} / N_k \mathbb{Z})$ implies the existence of an aperiodic tile in $\mathbb{Z}^d$. Greenfeld and Tao have recently disproved the well-known periodic tiling conjecture in $\mathbb{Z}^d$ for sufficiently large $d \in \mathbb{N}$ by constructing an aperiodic tile in $\mathbb{Z}^{d-k} \times (\mathbb{Z} / N_1\mathbb{Z} \times \ldots \times \mathbb{Z} / N_k \mathbb{Z})$ for suitable $d,N_1,\ldots,N_k \in \mathbb{N}$. Comment: 10 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |