Perverse filtrations, Chern filtrations, and refined BPS invariants for local $\mathbb{P}^2$
Autor: | Kononov, Yakov, Pi, Weite, Shen, Junliang |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Advances in Mathematics Volume 433, 15 November 2023, 109294 |
Druh dokumentu: | Working Paper |
Popis: | We explore connections between three structures associated with the cohomology of the moduli of 1-dimensional stable sheaves on $\mathbb{P}^2$: perverse filtrations, tautological classes, and refined BPS invariants for local $\mathbb{P}^2$. We formulate the $P=C$ conjecture identifying the perverse filtration with the Chern filtration for the free part of the cohomology. This can be viewed as an analog of de Cataldo--Hausel--Migliorini's $P=W$ conjecture for Hitchin systems. Our conjecture is compatible with the enumerative invariants of local $\mathbb{P}^2$ calculated by refined Pandharipande--Thomas theory or Nekrasov partition functions. It provides a cohomological lift of a conjectural product formula of the asymptotic refined BPS invariants. We prove the $P=C$ conjecture for degrees $\leq 4$. Comment: Some typos corrected; final version accepted to Adv. Math |
Databáze: | arXiv |
Externí odkaz: |