The Fukaya $A_\infty$ algebra of a non-orientable Lagrangian
Autor: | Kedar, Or, Solomon, Jake P. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $L\subset X$ be a not necessarily orientable relatively $Pin$ Lagrangian submanifold in a symplectic manifold $X$. We construct a family of cyclic unital curved $A_\infty$ structures on differential forms on $L$ with values in the local system of graded non-commutative rings given by the tensor algebra of the orientation local system of $L$. The family of $A_\infty$ structures is parameterized by the cohomology of $X$ relative to $L$ and satisfies properties analogous to the axioms of Gromov-Witten theory. On account of the non-orientability of $L,$ the evaluation maps of moduli spaces of $J$-holomorphic disks with boundary in $L$ may not be relatively orientable. To deal with this problem, we use recent results on orientor calculus. Comment: 58 pages, includes summary of relevant background from arXiv:2211.05117 |
Databáze: | arXiv |
Externí odkaz: |