On the $L^{2}$-restriction norm problem for closed geodesics on the modular surface

Autor: Ali, Dana Abou
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Let $f$ be a Petersson normalized Hecke-Maass cusp form with spectral parameter $t\geq 2$ and let $\mathcal{C}_{D}$ be the union of closed geodesics in $\text{Sl}_{2}(\mathbb{Z})\setminus \mathbb{H}$ associated to a fundamental discriminant $D>0$. Following a suggestion by Sarnak in his letter to Reznikov, we express the restriction norm $||f|_{\mathcal{C}_{D}}||_{2}^{2}$ as a weighted sum of central values of L-functions using Waldspurger's formula. This allows us to get an unconditional improvement over the current bounds.
Comment: 18 pages
Databáze: arXiv