Graph classes equivalent to 12-representable graphs

Autor: Takaoka, Asahi
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Jones et al. (2015) introduced the notion of $u$-representable graphs, where $u$ is a word over $\{1, 2\}$ different from $22\cdots2$, as a generalization of word-representable graphs. Kitaev (2016) showed that if $u$ is of length at least 3, then every graph is $u$-representable. This indicates that there are only two nontrivial classes in the theory of $u$-representable graphs: 11-representable graphs, which correspond to word-representable graphs, and 12-representable graphs. This study deals with 12-representable graphs. Jones et al. (2015) provided a characterization of 12-representable trees in terms of forbidden induced subgraphs. Chen and Kitaev (2022) presented a forbidden induced subgraph characterization of a subclass of 12-representable grid graphs. This paper shows that a bipartite graph is 12-representable if and only if it is an interval containment bigraph. The equivalence gives us a forbidden induced subgraph characterization of 12-representable bipartite graphs since the list of minimal forbidden induced subgraphs is known for interval containment bigraphs. We then have a forbidden induced subgraph characterization for grid graphs, which solves an open problem of Chen and Kitaev (2022). The study also shows that a graph is 12-representable if and only if it is the complement of a simple-triangle graph. This equivalence indicates that a necessary condition for 12-representability presented by Jones et al. (2015) is also sufficient. Finally, we show from these equivalences that 12-representability can be determined in $O(n^2)$ time for bipartite graphs and in $O(n(\bar{m}+n))$ time for arbitrary graphs, where $n$ and $\bar{m}$ are the number of vertices and edges of the complement of the given graph.
Comment: 12 pages, 6 figures, Corrected typos, Corrected Reference [22]
Databáze: arXiv