Dilations and information flow axioms in categorical probability
Autor: | Fritz, Tobias, Gonda, Tomáš, Houghton-Larsen, Nicholas Gauguin, Lorenzin, Antonio, Perrone, Paolo, Stein, Dario |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematical Structures in Computer Science 33(10), 913-957 (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/S0960129523000324 |
Popis: | We study the positivity and causality axioms for Markov categories as properties of dilations and information flow in Markov categories, and in variations thereof for arbitrary semicartesian monoidal categories. These help us show that being a positive Markov category is merely an additional property of a symmetric monoidal category (rather than extra structure). We also characterize the positivity of representable Markov categories and prove that causality implies positivity, but not conversely. Finally, we note that positivity fails for quasi-Borel spaces and interpret this failure as a privacy property of probabilistic name generation. Comment: 42 pages |
Databáze: | arXiv |
Externí odkaz: |