Multivariable ($\varphi$,$\mathcal{O}_K^\times$)-modules and local-global compatibility
Autor: | Breuil, Christophe, Herzig, Florian, Hu, Yongquan, Morra, Stefano, Schraen, Benjamin |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $p$ be a prime number, $K$ a finite unramified extension of $\mathbb{Q}_p$ and $\mathbb{F}$ a finite extension of $\mathbb{F}_p$. Using perfectoid spaces we associate to any finite-dimensional continuous representation $\overline{\rho}$ of ${\rm Gal}(\overline K/K)$ over $\mathbb{F}$ an \'etale $(\varphi,\mathcal{O}_K^\times)$-module $D_A^\otimes(\overline{\rho})$ over a completed localization $A$ of $\mathbb{F}[\![\mathcal{O}_K]\!]$. We conjecture that one can also associate an \'etale $(\varphi,\mathcal{O}_K^\times)$-module $D_A(\pi)$ to any smooth representation $\pi$ of $\mathrm{GL}_2(K)$ occurring in some Hecke eigenspace of the mod $p$ cohomology of a Shimura curve, and that moreover $D_A(\pi)$ is isomorphic (up to twist) to $D_A^\otimes(\overline{\rho})$, where $\overline{\rho}$ is the underlying $2$-dimensional representation of ${\rm Gal}(\overline K/K)$. Using previous work of the same authors, we prove this conjecture when $\overline{\rho}$ is semi-simple and sufficiently generic. Comment: Minor modifications |
Databáze: | arXiv |
Externí odkaz: |