Autor: |
Aguilera, Marcos K., Ben-David, Naama, Guerraoui, Rachid, Murat, Antoine, Xygkis, Athanasios, Zablotchi, Igor |
Rok vydání: |
2022 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We propose uBFT, the first State Machine Replication (SMR) system to achieve microsecond-scale latency in data centers, while using only $2f{+}1$ replicas to tolerate $f$ Byzantine failures. The Byzantine Fault Tolerance (BFT) provided by uBFT is essential as pure crashes appear to be a mere illusion with real-life systems reportedly failing in many unexpected ways. uBFT relies on a small non-tailored trusted computing base -- disaggregated memory -- and consumes a practically bounded amount of memory. uBFT is based on a novel abstraction called Consistent Tail Broadcast, which we use to prevent equivocation while bounding memory. We implement uBFT using RDMA-based disaggregated memory and obtain an end-to-end latency of as little as 10us. This is at least 50$\times$ faster than MinBFT , a state of the art $2f{+}1$ BFT SMR based on Intel's SGX. We use uBFT to replicate two KV-stores (Memcached and Redis), as well as a financial order matching engine (Liquibook). These applications have low latency (up to 20us) and become Byzantine tolerant with as little as 10us more. The price for uBFT is a small amount of reliable disaggregated memory (less than 1 MiB), which in our prototype consists of a small number of memory servers connected through RDMA and replicated for fault tolerance. |
Databáze: |
arXiv |
Externí odkaz: |
|