On the proportion of elements of prime order in finite symmetric groups
Autor: | Praeger, Cheryl E., Suleiman, Enoch |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We give a short proof for an explicit upper bound on the proportion of permutations of a given prime order $p$, acting on a finite set of given size $n$, which is sharp for certain $n$ and $p$. Namely, we prove that if $n\equiv k\pmod{p}$ with $0\leq k\leq p-1$, then this proportion is at most $(p\cdot k!)^{-1}$ with equality if and only if $p\leq n<2n$. Comment: 7 pages |
Databáze: | arXiv |
Externí odkaz: |