Unit sphere fibrations in Euclidean space

Autor: Asimov, Daniel, Frick, Florian, Harrison, Michael, Pegden, Wesley
Rok vydání: 2022
Předmět:
Zdroj: Proceedings of the Edinburgh Mathematical Society 67 (2024) 287-298
Druh dokumentu: Working Paper
DOI: 10.1017/S0013091524000038
Popis: We show that if an open set in $\mathbb{R}^d$ can be fibered by unit $n$-spheres, then $d \geq 2n+1$, and if $d = 2n+1$, then the spheres must be pairwise linked, and $n \in \left\{ 0, 1, 3, 7 \right\}$. For these values of $n$, we construct unit $n$-sphere fibrations in $\mathbb{R}^{2n+1}$.
Comment: 11 pages, 3 figures
Databáze: arXiv