Entropic exercises around the Kneser-Poulsen conjecture

Autor: Aishwarya, Gautam, Alam, Irfan, Li, Dongbin, Myroshnychenko, Sergii, Zatarain-Vera, Oscar
Rok vydání: 2022
Předmět:
Zdroj: Mathematika, Volume 69, Issue 3, pp. 841-866 (2023)
Druh dokumentu: Working Paper
DOI: 10.1112/mtk.12210
Popis: We develop an information-theoretic approach to study the Kneser--Poulsen conjecture in discrete geometry. This leads us to a broad question regarding whether R\'enyi entropies of independent sums decrease when one of the summands is contracted by a $1$-Lipschitz map. We answer this question affirmatively in various cases.
Comment: 23 pages, comments welcome! Final version with minor changes, added Corollary 2.8 (linear contractions decrease intrinsic volumes of convex bodies)
Databáze: arXiv