Entropic exercises around the Kneser-Poulsen conjecture
Autor: | Aishwarya, Gautam, Alam, Irfan, Li, Dongbin, Myroshnychenko, Sergii, Zatarain-Vera, Oscar |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematika, Volume 69, Issue 3, pp. 841-866 (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/mtk.12210 |
Popis: | We develop an information-theoretic approach to study the Kneser--Poulsen conjecture in discrete geometry. This leads us to a broad question regarding whether R\'enyi entropies of independent sums decrease when one of the summands is contracted by a $1$-Lipschitz map. We answer this question affirmatively in various cases. Comment: 23 pages, comments welcome! Final version with minor changes, added Corollary 2.8 (linear contractions decrease intrinsic volumes of convex bodies) |
Databáze: | arXiv |
Externí odkaz: |