Asymptotic decay towards steady states of solutions to very fast and singular diffusion equations

Autor: Kitavtsev, Georgy, Taranets, Roman M.
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We analyze long-time behavior of solutions to a class of problems related to very fast and singular diffusion porous medium equations having nonhomogeneous in space and time source terms with zero mean. In dimensions two and three, we determine critical values of porous medium exponent for the asymptotic $H^1$-convergence of the solutions to a unique nonhomogeneous positive steady state generally to hold.
Databáze: arXiv