Spectral Probing

Autor: Müller-Eberstein, Max, van der Goot, Rob, Plank, Barbara
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Linguistic information is encoded at varying timescales (subwords, phrases, etc.) and communicative levels, such as syntax and semantics. Contextualized embeddings have analogously been found to capture these phenomena at distinctive layers and frequencies. Leveraging these findings, we develop a fully learnable frequency filter to identify spectral profiles for any given task. It enables vastly more granular analyses than prior handcrafted filters, and improves on efficiency. After demonstrating the informativeness of spectral probing over manual filters in a monolingual setting, we investigate its multilingual characteristics across seven diverse NLP tasks in six languages. Our analyses identify distinctive spectral profiles which quantify cross-task similarity in a linguistically intuitive manner, while remaining consistent across languages-highlighting their potential as robust, lightweight task descriptors.
Comment: Accepted at EMNLP 2022 (Main Conference)
Databáze: arXiv