Popis: |
Finite dynamical systems (FDSs) are commonly used to model systems with a finite number of states that evolve deterministically and at discrete time steps. Considered up to isomorphism, those correspond to functional graphs. As such, FDSs have a sum and product operation, which correspond to the direct sum and direct product of their respective graphs; the collection of FDSs endowed with these operations then forms a semiring. The algebraic structure of the product of FDSs is particularly interesting. For instance, an FDS can be factorised if and only if it is composed of two sub-systems running in parallel. In this work, we further the understanding of the factorisation, division, and root finding problems for FDSs. Firstly, an FDS $A$ is cancellative if one can divide by it unambiguously, i.e. $AX = AY$ implies $X = Y$. We prove that an FDS $A$ is cancellative if and only if it has a fixpoint. Secondly, we prove that if an FDS $A$ has a $k$-th root (i.e. $B$ such that $B^k = A$), then it is unique. Thirdly, unlike integers, the monoid of FDS product does not have unique factorisation into irreducibles. We instead exhibit a large class of monoids of FDSs with unique factorisation. To obtain our main results, we introduce the unrolling of an FDS, which can be viewed as a space-time expansion of the system. This allows us to work with (possibly infinite) trees, where the product is easier to handle than its counterpart for FDSs. |