Concordance invariants from $U(1) \times U(1)$-equivariant Khovanov homology

Autor: Akhmechet, Rostislav, Zhang, Melissa
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We study Khovanov homology over the Frobenius algebra $\mathbb{F}[U,V,X]/((X-U)(X-V))$, or $U(1) \times U(1)$-equivariant Khovanov homology, and extract two families of concordance invariants using the algebraic $U$-power and $V$-power filtrations on the chain complex. We also further develop the reduced version of the theory and study its behavior under mirroring.
Comment: 29 pages
Databáze: arXiv