Concordance invariants from $U(1) \times U(1)$-equivariant Khovanov homology
Autor: | Akhmechet, Rostislav, Zhang, Melissa |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study Khovanov homology over the Frobenius algebra $\mathbb{F}[U,V,X]/((X-U)(X-V))$, or $U(1) \times U(1)$-equivariant Khovanov homology, and extract two families of concordance invariants using the algebraic $U$-power and $V$-power filtrations on the chain complex. We also further develop the reduced version of the theory and study its behavior under mirroring. Comment: 29 pages |
Databáze: | arXiv |
Externí odkaz: |