Localized initial data for Einstein equations
Autor: | Mao, Yuchen, Tao, Zhongkai |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We apply a new method with explicit solution operators to construct asymptotically flat initial data sets of the vacuum Einstein equation with new localization properties. Applications include an improvement of the decay rate in Carlotto--Schoen [arXiv:1407.4766] to $\mathcal{O}(|x|^{-(d-2)})$ and a construction of nontrivial asymptotically flat initial data supported in a degenerate sector $\{(x',x_d)\in\mathbb{R}^d:|x'|\leq x_d^\alpha\}$ for $\frac{3}{d+1}<\alpha<1$. Comment: The proof in section 3 is simplified. Theorem 3 is updated to include the second fundamental form k |
Databáze: | arXiv |
Externí odkaz: |