Conics on Barth--Bauer octics

Autor: Degtyarev, Alex
Rok vydání: 2022
Předmět:
Zdroj: Science China Mathematics, Vol. 67 (July 2024) No. 7: 1507--1524
Druh dokumentu: Working Paper
DOI: 10.1007/s11425-023-2160-3
Popis: We analyze the configurations of conics and lines on a special class of Kummer octic surfaces. In particular, we bound the number of conics by $176$ and show that there is a unique surface with $176$ conics, all irreducible: it admits a faithful action of one of the Mukai groups. Therefore, we also discuss conics and lines on Mukai surfaces: we discover a double plane (ramified at a smooth sextic curve) that contains $8910$ smooth conics.
Comment: Version accepted for publication in SCIENCE CHINA Mathematics
Databáze: arXiv