Conics on Barth--Bauer octics
Autor: | Degtyarev, Alex |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Science China Mathematics, Vol. 67 (July 2024) No. 7: 1507--1524 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11425-023-2160-3 |
Popis: | We analyze the configurations of conics and lines on a special class of Kummer octic surfaces. In particular, we bound the number of conics by $176$ and show that there is a unique surface with $176$ conics, all irreducible: it admits a faithful action of one of the Mukai groups. Therefore, we also discuss conics and lines on Mukai surfaces: we discover a double plane (ramified at a smooth sextic curve) that contains $8910$ smooth conics. Comment: Version accepted for publication in SCIENCE CHINA Mathematics |
Databáze: | arXiv |
Externí odkaz: |