Birational Invariance in Punctured Log Gromov-Witten Theory
Autor: | Johnston, Samuel |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Given a log smooth scheme $(X,D)$, and a log \'etale modification $(\tilde{X},\tilde{D}) \rightarrow (X,D)$, we relate the punctured Gromov-Witten theory of $(\tilde{X},\tilde{D})$ to the punctured Gromov-Witten theory of $(X,D)$, generalizing results of Abramovich and Wise in the non-punctured setting in "Birational invariance in log Gromov-Witten Theory". Using the main comparison results, we show a form of log \'etale invariance for the logarithmic mirror algebras and canonical scattering diagrams constructed in "Intrinsic Mirror Symmetry" and "The Canonical Wall Structure and Intrinsic Mirror Symmetry" respectively. Comment: 49 pages. Comments welcome |
Databáze: | arXiv |
Externí odkaz: |